Building a High-Performance AI Blog with Next.js, Tailwind CSS, and Vercel
Aadarsh- •
- 04 MIN TO READ

Agent Communication Protocol (ACP): IBM's Answer to Multi-Agent Systems
In the rapidly evolving landscape of artificial intelligence, multi-agent systems have emerged as a frontier technology for solving complex problems. IBM's recently unveiled Agent Communication Protocol (ACP) represents a significant advancement in this field, offering a standardized framework for autonomous AI agents to communicate, coordinate, and collaborate. This comprehensive guide examines IBM's ACP, its technical architecture, implementation strategies, and how it compares to the Model Context Protocol (MCP) standard that has gained industry traction.
IBM's Agent Communication Protocol addresses one of the most significant challenges in multi-agent systems: enabling efficient, standardized communication between diverse AI agents regardless of their underlying architectures or capabilities.
The ACP framework is built on four fundamental principles:
Universal Compatibility: ACP works across different agent architectures, language models, and specialized AI tools.
Intent-Based Communication: Rather than focusing on raw data exchange, ACP structures communication around intents, actions, and domain-specific schemas.
Semantic Understanding: The protocol enables agents to exchange not just data but semantically rich information with context and meaning.
Execution Coordination: ACP provides mechanisms for agents to coordinate complex workflows, delegate tasks, and synchronize their activities.
At its core, ACP consists of several interconnected components:
1# Simplified representation of ACP's architecture
2class ACPMessage:
3 def __init__(self, message_type, content, metadata=None):
4 self.message_type = message_type # intent, query, response, action, etc.
5 self.content = content # the actual message content
6 self.metadata = metadata or {} # additional context
7 self.id = str(uuid.uuid4())
8 self.timestamp = datetime.now().isoformat()
9
10class ACPAgent:
11 def __init__(self, agent_id, capabilities):
12 self.agent_id = agent_id
13 self.capabilities = capabilities # what this agent can do
14 self.message_handlers = {}
15
16 def register_handler(self, message_type, handler_function):
17 """Register a function to handle a specific message type"""
18 self.message_handlers[message_type] = handler_function
19
20 def send_message(self, target_agent_id, message):
21 """Send an ACP message to another agent"""
22 # Implementation would involve the ACP broker
23 acp_broker.route_message(self.agent_id, target_agent_id, message)
24
25 def receive_message(self, sender_id, message):
26 """Process an incoming ACP message"""
27 if message.message_type in self.message_handlers:
28 return self.message_handlers[message.message_type](sender_id, message)
29 else:
30 # Default handler
31 return ACPMessage("error", f"No handler for {message.message_type}")
32
33class ACPBroker:
34 def __init__(self):
35 self.registered_agents = {}
36 self.message_queue = Queue()
37
38 def register_agent(self, agent):
39 """Register an agent with the broker"""
40 self.registered_agents[agent.agent_id] = agent
41
42 def route_message(self, sender_id, target_id, message):
43 """Route a message from sender to target"""
44 if target_id in self.registered_agents:
45 target_agent = self.registered_agents[target_id]
46 return target_agent.receive_message(sender_id, message)
47 else:
48 # Queue message or return error
49 self.message_queue.put((sender_id, target_id, message))
50 return ACPMessage("error", f"Agent {target_id} not available")
51
This simplified representation illustrates the basic components, but the actual implementation includes additional features such as:
While both ACP and MCP enable AI capabilities, they serve different primary purposes and have distinct architectural approaches.
| Feature | Agent Communication Protocol (ACP) | Model Context Protocol (MCP) | |---------|-------------------------------------|------------------------------| | Primary Focus | Agent-to-agent communication | Tool access for language models | | Architecture | Peer-to-peer with broker | Client-server | | Communication Pattern | Multi-directional | Primarily bidirectional | | State Management | Distributed across agents | Primarily server-side | | Schema Definition | Intent-based schemas | JSON Schema | | Primary Use Case | Collaborative multi-agent systems | Extending LLM capabilities |
ACP employs a flexible communication architecture that can operate in multiple topologies:
1# Example of different ACP topologies
2
3# Star topology with central orchestrator
4orchestrator = ACPAgent("orchestrator", ["planning", "delegation"])
5worker_agent1 = ACPAgent("worker1", ["data_processing"])
6worker_agent2 = ACPAgent("worker2", ["reasoning"])
7worker_agent3 = ACPAgent("worker3", ["code_generation"])
8
9# Register all with broker
10acp_broker.register_agent(orchestrator)
11acp_broker.register_agent(worker_agent1)
12acp_broker.register_agent(worker_agent2)
13acp_broker.register_agent(worker_agent3)
14
15# Mesh topology where any agent can communicate with any other
16for agent in [worker_agent1, worker_agent2, worker_agent3]:
17 # Each agent knows about the others
18 agent.peer_registry = [a.agent_id for a in [worker_agent1, worker_agent2, worker_agent3] if a.agent_id != agent.agent_id]
19
MCP, in contrast, follows a strict client-server model:
1# MCP client-server model
2class MCPClient:
3 def __init__(self, server_url):
4 self.server_url = server_url
5
6 def call_function(self, function_name, parameters):
7 """Call a function on the MCP server"""
8 payload = {
9 "function": function_name,
10 "parameters": parameters
11 }
12 response = requests.post(f"{self.server_url}/v1/invoke", json=payload)
13 return response.json()
14
15# LLM uses the client to access tools
16llm_response = llm_service.generate(
17 prompt="Search for recent papers on multi-agent systems",
18 tools=[MCPClient("https://search.example.com")]
19)
20
ACP uses a rich message format with intent semantics:
1# ACP message with intent semantics
2search_intent = ACPMessage(
3 message_type="intent",
4 content={
5 "intent": "search_knowledge_base",
6 "parameters": {
7 "query": "latest research on multi-agent coordination",
8 "max_results": 5,
9 "domains": ["computer_science", "artificial_intelligence"]
10 }
11 },
12 metadata={
13 "priority": "high",
14 "context": "literature_review",
15 "requester": "research_planning_agent"
16 }
17)
18
19# Send the intent to an agent capable of searching
20orchestrator.send_message("knowledge_agent", search_intent)
21
MCP uses a more straightforward function call paradigm:
1// MCP function call format
2{
3 "function": "web_search",
4 "parameters": {
5 "query": "latest research on multi-agent coordination",
6 "max_results": 5
7 }
8}
9
ACP includes built-in capability discovery:
1# ACP capability discovery
2discovery_message = ACPMessage(
3 message_type="discovery",
4 content={
5 "query_type": "capabilities",
6 "capability_domain": "data_processing"
7 }
8)
9
10# Broadcast to all agents via broker
11responses = acp_broker.broadcast(discovery_message)
12
13# Find agents that can process CSV data
14csv_capable_agents = [
15 agent_id for agent_id, response in responses.items()
16 if "csv_processing" in response.content.get("capabilities", [])
17]
18
MCP typically uses static configuration:
1// MCP server manifest listing available functions
2{
3 "functions": [
4 {
5 "name": "web_search",
6 "description": "Search the web for information",
7 "parameters": {
8 "query": {"type": "string", "description": "The search query"},
9 "max_results": {"type": "integer", "description": "Maximum number of results"}
10 }
11 },
12 {
13 "name": "image_generation",
14 "description": "Generate an image from text description",
15 "parameters": {
16 "prompt": {"type": "string", "description": "Text description of the image"},
17 "style": {"type": "string", "description": "Artistic style to use"}
18 }
19 }
20 ]
21}
22
Setting up ACP in a production environment involves several key steps:
1pip install ibm-agent-communication-protocol
2
1# Define capabilities for a data processing agent
2data_agent_capabilities = {
3 "data_processing": {
4 "formats": ["csv", "json", "xml", "parquet"],
5 "operations": ["filter", "transform", "aggregate", "join"],
6 "max_data_size": "500MB"
7 },
8 "data_analysis": {
9 "statistical_methods": ["regression", "classification", "clustering"],
10 "visualization": ["charts", "graphs", "dashboards"]
11 }
12}
13
14# Create the agent with these capabilities
15data_agent = ACPAgent("data_processor_agent", data_agent_capabilities)
16
1# Implement handler for data processing requests
2def handle_data_processing(sender_id, message):
3 """Handle data processing requests from other agents"""
4 try:
5 # Extract data location and requested operation
6 data_source = message.content.get("data_source")
7 operation = message.content.get("operation")
8 parameters = message.content.get("parameters", {})
9
10 # Perform the requested operation
11 result = perform_data_operation(data_source, operation, parameters)
12
13 # Return success response
14 return ACPMessage(
15 message_type="response",
16 content={
17 "status": "success",
18 "result_location": result.location,
19 "metadata": result.metadata
20 },
21 metadata={"processing_time": result.processing_time}
22 )
23 except Exception as e:
24 # Return error response
25 return ACPMessage(
26 message_type="error",
27 content={
28 "error_type": type(e).__name__,
29 "error_message": str(e)
30 }
31 )
32
33# Register the handler
34data_agent.register_handler("data_processing_request", handle_data_processing)
35
1# Initialize the broker
2broker = ACPBroker()
3
4# Register agents with the broker
5broker.register_agent(data_agent)
6broker.register_agent(visualization_agent)
7broker.register_agent(ml_model_agent)
8broker.register_agent(coordinator_agent)
9
10# Start the broker service
11broker.start(host="0.0.0.0", port=8765)
12
For enterprise deployments, additional configuration is typically needed:
1# Enterprise configuration for ACP
2acp_config = {
3 "security": {
4 "authentication": {
5 "type": "oauth2",
6 "provider": "keycloak",
7 "config": {
8 "server_url": "https://auth.example.com/auth",
9 "realm": "ai-agents",
10 "client_id": "acp-broker"
11 }
12 },
13 "encryption": {
14 "message_encryption": True,
15 "key_rotation_period": "24h"
16 },
17 "authorization": {
18 "policy_engine": "OPA",
19 "policy_endpoint": "https://policies.example.com/v1/data/acp"
20 }
21 },
22 "persistence": {
23 "storage_type": "distributed",
24 "provider": "cassandra",
25 "retention_period": "90d",
26 "backup_schedule": "daily"
27 },
28 "monitoring": {
29 "metrics_endpoint": "https://metrics.example.com/ingest",
30 "log_level": "info",
31 "tracing": {
32 "enabled": True,
33 "exporter": "jaeger"
34 }
35 },
36 "scaling": {
37 "broker_instances": 3,
38 "load_balancing": "round_robin",
39 "message_queue": {
40 "type": "kafka",
41 "config": {
42 "bootstrap_servers": ["kafka1:9092", "kafka2:9092"],
43 "topic_prefix": "acp_messages"
44 }
45 }
46 }
47}
48
49# Initialize broker with enterprise configuration
50enterprise_broker = ACPBroker(config=acp_config)
51
IBM's ACP has been deployed in various enterprise scenarios, demonstrating its versatility and effectiveness.
A major financial institution implemented an ACP-based multi-agent system for real-time fraud detection:
1# Simplified representation of the fraud detection system
2
3# Agent definitions
4transaction_monitoring = ACPAgent("transaction_monitor", ["stream_processing", "pattern_recognition"])
5customer_profile = ACPAgent("customer_profile", ["identity_verification", "behavior_analysis"])
6fraud_analyzer = ACPAgent("fraud_analyzer", ["risk_scoring", "decision_making"])
7alert_manager = ACPAgent("alert_manager", ["notification", "case_management"])
8
9# Communication flow for a transaction
10def process_transaction(transaction_data):
11 # Step 1: Transaction monitor identifies suspicious activity
12 analysis_message = ACPMessage(
13 message_type="analysis_request",
14 content={
15 "transaction": transaction_data,
16 "analysis_type": "anomaly_detection"
17 }
18 )
19 anomaly_result = transaction_monitoring.process_transaction(analysis_message)
20
21 if anomaly_result.content.get("anomaly_score", 0) > THRESHOLD:
22 # Step 2: Get customer profile information
23 profile_message = ACPMessage(
24 message_type="profile_request",
25 content={
26 "customer_id": transaction_data["customer_id"],
27 "context": "fraud_investigation"
28 }
29 )
30 profile_result = customer_profile.process_request(profile_message)
31
32 # Step 3: Comprehensive fraud analysis
33 fraud_message = ACPMessage(
34 message_type="fraud_analysis",
35 content={
36 "transaction": transaction_data,
37 "anomaly_data": anomaly_result.content,
38 "customer_profile": profile_result.content
39 }
40 )
41 fraud_result = fraud_analyzer.analyze(fraud_message)
42
43 # Step 4: Handle alerts if necessary
44 if fraud_result.content.get("fraud_probability", 0) > 0.7:
45 alert_message = ACPMessage(
46 message_type="create_alert",
47 content={
48 "severity": "high",
49 "fraud_type": fraud_result.content.get("fraud_type"),
50 "evidence": fraud_result.content.get("evidence"),
51 "recommended_actions": fraud_result.content.get("recommendations")
52 }
53 )
54 alert_manager.create_alert(alert_message)
55
56 return {
57 "transaction_status": "blocked",
58 "reason": "potential_fraud",
59 "case_id": alert_message.response.content.get("case_id")
60 }
61
62 return {"transaction_status": "approved"}
63
This system processed over 10,000 transactions per second with a 200% improvement in fraud detection rates and a 70% reduction in false positives compared to their previous system.
A healthcare provider implemented an ACP-based diagnostic system:
1# Healthcare multi-agent system architecture
2patient_data_agent = ACPAgent("patient_data", ["ehr_access", "data_normalization"])
3imaging_analysis_agent = ACPAgent("imaging", ["radiology_analysis", "image_processing"])
4diagnostic_agent = ACPAgent("diagnostics", ["medical_reasoning", "differential_diagnosis"])
5treatment_recommendation_agent = ACPAgent("treatment", ["protocol_matching", "personalized_medicine"])
6expert_consultation_agent = ACPAgent("expert", ["specialist_routing", "uncertainty_handling"])
7
8# Define the diagnostic workflow
9class DiagnosticWorkflow:
10 def __init__(self, broker):
11 self.broker = broker
12
13 def diagnose_patient(self, patient_id, presenting_symptoms, diagnostic_question):
14 # Step 1: Retrieve patient history
15 history_request = ACPMessage(
16 message_type="data_request",
17 content={
18 "patient_id": patient_id,
19 "data_type": "medical_history",
20 "timeframe": "complete"
21 }
22 )
23 patient_history = self.broker.route_message(
24 "workflow", "patient_data", history_request
25 ).content
26
27 # Step 2: Request relevant imaging if available
28 imaging_request = ACPMessage(
29 message_type="imaging_analysis",
30 content={
31 "patient_id": patient_id,
32 "relevant_symptoms": presenting_symptoms,
33 "analysis_focus": diagnostic_question
34 }
35 )
36 imaging_results = self.broker.route_message(
37 "workflow", "imaging", imaging_request
38 ).content
39
40 # Step 3: Generate diagnostic hypotheses
41 diagnostic_request = ACPMessage(
42 message_type="diagnostic_analysis",
43 content={
44 "patient_history": patient_history,
45 "presenting_symptoms": presenting_symptoms,
46 "imaging_results": imaging_results,
47 "diagnostic_question": diagnostic_question
48 }
49 )
50 diagnosis = self.broker.route_message(
51 "workflow", "diagnostics", diagnostic_request
52 ).content
53
54 # Step 4: If diagnosis confidence is low, consult specialists
55 if diagnosis.get("confidence", 0) < 0.8:
56 expert_request = ACPMessage(
57 message_type="expert_consultation",
58 content={
59 "case_summary": {
60 "patient_history": patient_history,
61 "symptoms": presenting_symptoms,
62 "imaging": imaging_results,
63 "initial_diagnosis": diagnosis
64 },
65 "specialty_focus": diagnosis.get("recommended_specialties", [])
66 }
67 )
68 expert_input = self.broker.route_message(
69 "workflow", "expert", expert_request
70 ).content
71
72 # Update diagnosis with expert input
73 diagnosis["expert_consultation"] = expert_input
74 diagnosis["confidence"] = expert_input.get("diagnostic_confidence", diagnosis["confidence"])
75
76 # Step 5: Generate treatment recommendations
77 if diagnosis.get("confidence", 0) >= 0.6:
78 treatment_request = ACPMessage(
79 message_type="treatment_recommendation",
80 content={
81 "diagnosis": diagnosis,
82 "patient_factors": patient_history.get("relevant_factors", {}),
83 "personalization_level": "high"
84 }
85 )
86 treatment_plan = self.broker.route_message(
87 "workflow", "treatment", treatment_request
88 ).content
89
90 return {
91 "diagnosis": diagnosis,
92 "treatment_plan": treatment_plan,
93 "confidence": diagnosis.get("confidence", 0)
94 }
95 else:
96 return {
97 "status": "inconclusive",
98 "preliminary_findings": diagnosis.get("hypotheses", []),
99 "recommended_tests": diagnosis.get("recommended_tests", [])
100 }
101
This system demonstrated a 32% improvement in diagnostic accuracy and reduced the time to treatment recommendation by 61% compared to standard protocols.
Organizations deploying agent systems often need to decide between ACP and MCP, or determine how to integrate both. Here's a practical comparison based on real-world implementations:
ACP is typically the better choice when:
Your system requires complex agent interaction patterns
Sophisticated coordination is needed
Distributed decision-making is important
MCP is typically the better choice when:
You're extending a language model with tools
Centralized orchestration works well
You need simplicity and standardization
Many sophisticated AI systems use both protocols:
1# Hybrid architecture using both ACP and MCP
2
3# MCP client for external tool access
4mcp_client = MCPClient(tools=[
5 "web_search", "database_access", "code_execution"
6])
7
8# ACP agents for complex coordination
9analytics_agent = ACPAgent("analytics", ["data_analysis", "forecasting"])
10planning_agent = ACPAgent("planning", ["strategy", "resource_allocation"])
11execution_agent = ACPAgent("execution", ["task_management", "monitoring"])
12
13# Coordinator that bridges ACP and MCP
14class HybridCoordinator:
15 def __init__(self, acp_broker, mcp_client, llm_service):
16 self.acp_broker = acp_broker
17 self.mcp_client = mcp_client
18 self.llm = llm_service
19
20 def process_request(self, user_query):
21 # Step 1: Use LLM to understand request and determine approach
22 planning_response = self.llm.generate(
23 prompt=f"Analyze this request and determine if it needs multi-agent coordination or simple tool use: {user_query}",
24 max_tokens=1000
25 )
26
27 approach = self._parse_approach(planning_response)
28
29 if approach == "tool_use":
30 # Step 2A: Handle via MCP for simpler requests
31 tool_response = self.llm.generate(
32 prompt=user_query,
33 tools=self.mcp_client.available_tools
34 )
35 return tool_response
36 else:
37 # Step 2B: Coordinate multiple agents via ACP
38 workflow = self._create_agent_workflow(user_query, planning_response)
39 result = self._execute_workflow(workflow)
40 return result
41
42 def _parse_approach(self, planning_response):
43 """Parse LLM response to determine approach"""
44 # Implementation details omitted
45 pass
46
47 def _create_agent_workflow(self, query, planning):
48 """Create a workflow of agent interactions"""
49 # Implementation details omitted
50 pass
51
52 def _execute_workflow(self, workflow):
53 """Execute a multi-agent workflow using ACP"""
54 # Implementation details omitted
55 pass
56
When implementing ACP in production, several factors affect performance and scalability:
Internal IBM benchmarks show the following ACP performance characteristics:
| Metric | Value | |--------|-------| | Message Throughput | Up to 10,000 messages/second per broker | | Latency | 5-20ms for local communication, 50-200ms for distributed | | Scalability | Linear scaling with broker instances | | State Size | Configurable with optional message persistence |
To maximize ACP performance:
1# Performance optimization techniques
2
3# 1. Message batching for efficiency
4def send_batch_messages(agent, target_id, messages):
5 batch_message = ACPMessage(
6 message_type="batch",
7 content={
8 "messages": [m.to_dict() for m in messages],
9 "batch_id": str(uuid.uuid4())
10 }
11 )
12 return agent.send_message(target_id, batch_message)
13
14# 2. Selective message persistence
15broker.configure_persistence({
16 "message_types_to_persist": ["decision", "critical_action", "error"],
17 "retention_policy": {
18 "default": "7d",
19 "error": "90d",
20 "decision": "30d"
21 }
22})
23
24# 3. Load balancing for high-volume communication
25broker.configure_load_balancing({
26 "strategy": "least_connections",
27 "health_check_interval": "5s",
28 "circuit_breaker": {
29 "error_threshold": 0.25,
30 "min_requests": 20,
31 "reset_timeout": "30s"
32 }
33})
34
IBM's ACP includes comprehensive security and governance features:
1# Authentication configuration
2auth_config = {
3 "providers": [
4 {
5 "type": "jwt",
6 "issuer": "https://auth.company.com",
7 "audience": "acp-system",
8 "key_location": "/keys/public_key.pem"
9 }
10 ],
11 "agent_authentication": {
12 "type": "certificate",
13 "ca_location": "/keys/ca.pem",
14 "verification_depth": 2
15 }
16}
17
18# Authorization policies
19authorization_policy = {
20 "default": "deny",
21 "rules": [
22 {
23 "agent_id": "data_processor_agent",
24 "can_receive_from": ["orchestrator_agent", "analytics_agent"],
25 "can_send_to": ["orchestrator_agent", "storage_agent"],
26 "allowed_message_types": ["data_request", "processing_result", "status"]
27 },
28 {
29 "agent_id": "orchestrator_agent",
30 "can_receive_from": "*",
31 "can_send_to": "*",
32 "allowed_message_types": "*"
33 }
34 # Additional rules...
35 ]
36}
37
ACP provides comprehensive audit logging for compliance and debugging:
1# Configure audit logging
2broker.configure_audit({
3 "log_destination": {
4 "type": "elasticsearch",
5 "endpoint": "https://logging.company.com/acp_audit",
6 "index_pattern": "acp-audit-{YYYY.MM.DD}"
7 },
8 "log_levels": {
9 "message_routing": "info",
10 "authentication": "info",
11 "authorization_failures": "warning",
12 "system_errors": "error"
13 },
14 "pii_handling": {
15 "strategy": "redact",
16 "patterns": ["credit_card", "ssn", "password"]
17 },
18 "retention": "365d"
19})
20
IBM has published its roadmap for ACP, with several key developments planned:
Future versions will enable seamless communication between separate ACP deployments:
1# Conceptual implementation of ACP federation
2federation_config = {
3 "trusted_domains": [
4 {
5 "domain": "partner-company.com",
6 "trust_anchor": "/keys/partner_ca.pem",
7 "allowed_message_types": ["query", "information_request"],
8 "rate_limits": {
9 "max_messages_per_minute": 100,
10 "max_data_transfer_per_day": "50MB"
11 }
12 }
13 ],
14 "discovery": {
15 "broadcast_capabilities": True,
16 "expose_agent_directory": False
17 },
18 "domain_identifier": "company.com",
19 "gateway_endpoints": [
20 "https://acp-gw1.company.com",
21 "https://acp-gw2.company.com"
22 ]
23}
24
25# Initialize federated broker
26federated_broker = ACPFederatedBroker(
27 local_config=broker_config,
28 federation_config=federation_config
29)
30
ACP will incorporate standardized planning capabilities:
1# Future ACP planning extension
2from acp.extensions.planning import ACPPlanner
3
4# Create a multi-agent planner
5planner = ACPPlanner(
6 planning_strategy="hierarchical_task_network",
7 planning_horizon="long_term",
8 optimization_objective="efficiency"
9)
10
11# Define a complex task
12complex_task = {
13 "goal": "Analyze customer feedback and develop product improvement recommendations",
14 "constraints": [
15 "Must be completed within 24 hours",
16 "Must consider data from all product lines",
17 "Recommendations should be prioritized by impact and cost"
18 ],
19 "available_agents": [
20 "data_processor_agent",
21 "sentiment_analysis_agent",
22 "statistical_analysis_agent",
23 "product_knowledge_agent",
24 "recommendation_agent"
25 ]
26}
27
28# Generate execution plan
29execution_plan = planner.create_plan(complex_task)
30
31# The plan specifies agent interactions, dependencies, and workflow
32print(execution_plan.workflow_steps) # List of ordered steps
33print(execution_plan.agent_assignments) # Which agent handles each step
34print(execution_plan.estimated_resources) # Projected resource usage
35
Future versions will include standardized negotiation capabilities:
1# Conceptual negotiation protocol
2from acp.extensions.negotiation import ACPNegotiator
3
4# Initialize negotiators for two agents
5resource_negotiator = ACPNegotiator(
6 agent_id="resource_manager",
7 negotiation_strategy="utility_based",
8 preference_model={
9 "cpu_allocation": {"weight": 0.4, "utility_function": "linear"},
10 "memory_allocation": {"weight": 0.3, "utility_function": "logarithmic"},
11 "priority_level": {"weight": 0.3, "utility_function": "exponential"}
12 }
13)
14
15task_negotiator = ACPNegotiator(
16 agent_id="task_executor",
17 negotiation_strategy="constraint_based",
18 preference_model={
19 "cpu_allocation": {"weight": 0.5, "utility_function": "exponential", "min_acceptable": 4},
20 "memory_allocation": {"weight": 0.4, "utility_function": "logarithmic", "min_acceptable": "8GB"},
21 "priority_level": {"weight": 0.1, "utility_function": "linear", "min_acceptable": 3}
22 }
23)
24
25# Conduct negotiation
26negotiation_session = ACPNegotiationSession(
27 participants=[resource_negotiator, task_negotiator],
28 topic="resource_allocation_for_data_processing_task",
29 max_rounds=5,
30 timeout="30s"
31)
32
33agreement = negotiation_session.negotiate()
34
35if agreement.status == "accepted":
36 print(f"Agreement reached: {agreement.terms}")
37else:
38 print(f"Negotiation failed: {agreement.failure_reason}")
39
IBM's Agent Communication Protocol represents a significant advancement in enabling sophisticated multi-agent AI systems. As organizations build increasingly complex AI ecosystems, the need for standardized communication between autonomous agents becomes critical.
While MCP has gained traction for extending language model capabilities through tool use, ACP addresses the distinct challenge of agent-to-agent communication and coordination. Both protocols serve important roles in the evolving AI landscape, with ACP positioned as the foundation for next-generation collaborative AI systems.
Organizations looking to implement advanced AI systems should evaluate both protocols based on their specific requirements, with particular attention to the complexity of agent interactions, the need for distributed decision-making, and long-term scalability considerations.
As IBM continues to evolve the ACP standard, we can expect to see increasingly sophisticated multi-agent systems that can tackle complex problems through effective communication, coordination, and collaboration—bringing us closer to truly intelligent AI ecosystems.